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Abstract

Classical diffusion is considered as a time dependent
and self consistent problem for a free-boundary plasma
in the plane slab and cylindrical slab geometries. These
conditions approximate the Belt Pinch experiment. It is
found that the instantaneous diffusion rate changes ra-
pidly as the plasma spreads and the fields decay. There
is a succession of at least four physical phenomena
which can dominate under different conditions: The po-
loidal electric field decays rapidly during an initial,
finite-B, transient stage. The pinch effect induced by
the toroidal electric field may impede diffusion for an
intermediate time span. After the pinch effects become
negligible, Spitzer diffusion induces a pressure decay
which is algebraic with time and a poloidal B-field de-
cay which is exponential with time. Although the pres-
sure decay is initially faster, the rates soon become
comparable. The Pfirsch-Schliiter effect enhances this
diffusion only late in the discharge after the plasma
has spread out and the rotational transform has de-
cayed.

A formula is also found for the radial position of the
cylindrical slab as the fields decay. For passive field

programming, there is a fixed but unstable position.




I. Introduction

Classical plasma diffusion / see for example 1 - 17 / em-
bodies a variety of physical processes. Here we shall con-
sider the combination of "Spitzer" diffusion, the pinch
effect, flow fields resulting in the Pfirsch-Schliiter
effect, and the resistive decay of the fields. Our physi-
cal understanding of these effects can be developed by
considering them one at a time before combining them in

a self-consistent theory. More effects come from the evo-
lution of the plasma shape and the evolgtion of the fields
driven by the external circuitry. For the present work,
these effects will be reduced to their simplest form by
considering only one dimensional models (plane and cylin-
drical slab), free plasma boundary (with no plasma loss

from the system), and perfectly conducting outer walls.

The goal of this work is to understand the slowest stages
of diffusion in the Belt Pinch /18/. To this end, our as-
sumptions will be tailored to the following observations
of the Belt Pinch plasma.




After the initial shock heating and a transient axial con-
traction phase, the Belt Pinch operates like a Tokamak since
it is an axisymmetric toroidal plasma in which the magnetic

fields necessary for equilibrium are maintained by plasma

currents. However, the Belt Pinch differs from most Tokamaks

in the following ways:

1)

2)

The plasma cross section is highly elongated (presently
about 40 cm high, several cm thick, and 22 cm major radius).
For a given rotational transform £ /2/(kept below the
Kruskal-Shafranov limit . < 1 in experiments) the elongated
plasma has larger poloidal B-field (short way around) and
larger toroidal current density (long way around) than a
circular plasma with the same thickness and applied toroidal
B-field. This results in higher B and a faster Ohmic heating
rate. For reasons associated with the shock heating, the

initial P and density (ne ~ 1016

) are high compared to
circular Tokamaks. Hence a fully applicable theory should
be self-consistent at finite B. In this work, finite B
effects are estimated; but the analysis used to reduce the
partial differential equations to ordinary differential

equations is generally valid for B ~ 0O(.1l).

Hence we confine most of our attention to the later stages
of the Belt Pinch discharge.

There is no tangible limiter to define the edge of the Belt
Pinch plasma; the visible plasma is well separated from the
glass discharge tube and appears to change shape and spread
over time. There might be a distinct vacuum region sharply
distinguished from the plasma region by a separatrix. As

yet, there is no satisfactory equilibrium theory to des-
cribe the evolution of such an elongated plasma shape as

the plasma currents and coil currents change. Recent computer
calculations by Lackner, v.Hagenow and Ochem have just begun
to simulate the Belt Pinch equilibrium /19,20/.




3)

4)

However, it is necessary to have this global information
for a self consistent diffusion theory. For the present
work we shall use the simplest model of an infinite slab
with free boundary surrounded by vacuum magnetic fields.
It will be assumed that no plasma is lost to the system
so that the amount of plasma per unit length is fixed
as the slab spreads in thickness. The alternative possible
assumption of a fixed plasma boundary across which plasma
is lost leads to a steepening of the pressure profile near
the edge; then the use of series expansions around the
plasma center is no longer feasible.

The toroidal current decays during the observed plasma
life time because there is no iron core transformer (pre-
sent in most Tokamaks). Hence the theory must be time-
dependent.

The present Belt Pinch operafes at low temperatures (typ-
ically 10 eV). We believe that this temperature is
determined by the balance between Ohmic heating and radiation
from impurity spectral lines /21,22/ and that this balance

is achieved on a time scale of less than 10 psec (compared
with the observed plasma life time of 50 - 100 psec). This
"radiation barrier" is a steep function of temperature.
Hence, the local plasma temperature should be even more
uniform than would be expected from the effect of heat con-
duction alone /4/ and it should be nearly constant in time

as other parameters vary over some range. It does not seem
worth while to make more detailed calculations of temperature
profiles and their effects because the impurity level is not
accurately known and the nature of impurity radiation cooling
is not precisely known.

For the purpose of estimation, an example of the radiation
barrier due to the presence of Oxygen impurity under Belt
Pinch conditions has been prepared by W. Engelhardt /22/




and is shown in Fig.l. We believe that it is misleading

to use the equilibrium values of the ionization stages for
a calculation of the radiation barrier. Rather, one should
use the degree of ionization appropriate to the time scale
over which a given temperature and density range has been
held. Using the calculation by W. Lotz /23/ for T, = 10 ev
and ng = 101® the ionization time scales are: O

Orre Sy IV’
figures are very sensitive to the temperature. An experimen-

1 .01 nsec:

.33 nsec: 5 psec; O 100 usec; etc. These

tal observation /24/ at 10 psec for a Belt Pinch discharge
where T  was below 10 eV indicated that the Oxygen impurity
was almost completely in the OII stage. However, the cooling

rates for the ionization stages Qrp through O are very

VI
similar. For comparison, the Ohmic heating rate in the center
of the plasma is shown (straight lines in Fig.l) based on

the formula

1 dTe -1 3/2 2
T, 5c— [wsec] = 3.43/T, [ev] A° [em]

where A is the slab thickness. This formula assumes a
parabolic pressure profile (see Section III) to determine

the current density as a function of the external poloidal
field and assumes that the central plasma pressure is ba-
lanced by the external poloidal field. Where the Ohmic heating
curve is below the radiation cooling curve the plasma cools

at a rate determined by the difference between the curves.
Intersections on the left side of the radiation curve deter-
mine stable temperatures while intersections on the right

side (not possible with this particular curve) are unstable
to temperature changes. For stable temperature points, the
temperature changes little with moderate changes of A and

Ry = especially of the density decreases as the plasma spreads
(the radiation rate for a given-ion is proportional to the
impurity ion density).




5) Neoclassical effects are expected to set in at electron
temperatures of about 400 ev for the Belt Pinch geometry
and density /25/. Hence classical diffusion should apply
to this and the next generation of Belt Pinches.

These are the relevant features of the Belt Pinch. Motivated

by these observations we construct the following model suitable
for analysis: We consider a slab-like plasma with uniform and
constant temperature, free boundary, and naturally decaying
fields. The mathematical model consists of the moment equations
/26/ and pre ~Maxwell equations (without displacement current)
/27/.neglecting inertial terms, viscosity, and charge separation.
These and the other assumptions involved in the reduction of

the moment equations (mass and momentum) are discussed in Appendix
A. This results in the standardequations

J=V xB ‘ (2)
Vp = J x B (3)
;Sl—[J-(1-c)J—];BzB]=cE+va (4)
9B = _ v x cE (5)
d

OP e .

ot v . (pv) (6)
C = nH/hL = 0.51 for 2 =1

3/ 2
= 2 2 2 2
S = Wre Te/c 0.124 (Te[ev]) psec/cm”.
Here S = l/cnl provides the basic time /(length)2 scale for
diffusion. The current and pressure have been rescaled
j[esu] » J c/4m, p » p/am.




The pressure balance equation (3) and Ohm’s Law Eq.(4) are
derived from the equations of motion for electrons and singly
charged ions.

To derive Eq.(3) we neglected the inertial term, which scales
like the ion transit time divided by the diffusion time over a
éorresponding distance, and a charge separation term, which
scales like the Debye length divided by plasma thickness. To
derive Eq. (4), the Hall current was expressed as a gradient
(using Eq.(3) and uniform temperature) and absorbed into the
electric field - the new electric field has no component normal
to the flux surfaces.

In section II, the plane slab diffusion is considered in a number
of limiting cases and a set of ordinary differential equations

is derived for the evolution of the pressure and the B-fields.
In section III, the corresponding equations are derived for the
infinite cylindrical slab and the models are compared using

a representative set of computer solutions.

The plane slab is treated most extensively because its analysis
is the cleanest and the limits of applicability can be most
clearly defined. The infinite cylindrical slab exhibits the
Pfirsch-Schliiter effect and also the radial drift of the plasma,
as flux diffuses through it, without the complications of a
separatrix and special coils that surround the finite length
equilibrium,

However, both slab models are mathematically singular approxi-
mations to finite plasmas geometries. Some of the fundamental

mathematical problems are discussed in Appendix B.



II. Plane Slab

There is a surprising variety of physical phenomena to be
found in even this simplest one dimensional diffusion model.
Furthermore, we shall see that the plane slab results provide
a good approximation to the cylindrical slab diffusion under
those conditions where the Pfirsch-Schliiter effect can be neg-
lected.

The conventions and notation are illustrated in Fig.2. The
system is symmetric across x = 0. There is a vacuum between
the edge of the plasma xe(t) and a perfectly conducting
(flux preserving) wall at fixed position Xy (E(xw) = 0). In
the vacuum there is an externally imposed fixed B " field.
For ease of comparison with later models, this will be called
the "toroidal field". The other field component, "poloidal
field" Bze(t) in the vacuum is entirely due to plasma currents.
Inside the plasma, both field components By (x,t) and Bz(x,t)
are altered by plasma currents. At x = O, the boundary con-
ditions for the B-field, current, E-field, diffusion velocity
(x-component) v and pressure are

Bz=Jz=Ez=V=O

bBy/bx = be/bx = bEy/bx = dp/dx = O.

Since all B-field lines are straight in the plane slab model,

the pressure balance equation is an exact differential

d (2p $8,2 + B,2) / dx = oO. (7)

There is a discontinuity in the conductivity, and hence also
in the current, at the edge of the plasma. For this reason,
it is convenient to use the integral form of Faraday’s law,
Eqg. (5), using fluxes defined by




i

B2

y be/bx

when Y, is the poloidal flux between the outer wall and any

-0y, /ax 0 Y (x) =0

(8)

B o)

~e

Yy(O)

plane x, and Yy is the toroidal flux between the center of the

plasma and any plane X.

Using the assumption that the wall is a perfect conductor and

again assuming symmetry,

Ey(xw) =0 E, (o) = 0,
we have the integral form of Faraday’s law

sz/bt = cC Ey : be/bt = cE,. (9)
Before proceeding by formal expansion to a full solution of

Egqs. (1), (2), (4), (6), (7) and (9), let us consider several
extreme cases by making special selections for the dominant

terms.

consider the field decay within an isotropic rigid plasma

(c =1, v = 0). The toroidal By field may be decomposed into

a uniform part plus a set of simple harmonics cos ((2n+1)ﬂx/2xe)
representing the dip of the toroidal field within the plasma.
Then each harmonic decays exponentially with e-folding time

t. mw¥is (2 /(2n+1)m) 2. (10)
These time scales for the decay of the poloidal current are
the fastest diffusion time scales - they will be considered
transients here. The decay of the poloidal B, field is not so
simple. However, if the plasma is thin by comparison to the

wall distance

a = xe/xw < 1, ‘ (11)



there is a large reservoir of poloidal field energy by com-
parison to plasma energy. Then the time scale for the decay
of the poloidal Bz—field, as well as the toroidal current
and electric field, is

Tpol B~ *w *e S. (12)

More detailed studies of such decay times (for circular cross
sections) have been made by Hobbs /28/.

The above applies to a rigid plasma; now consider an expanding
plasma and neglect the electric fields.

For this extreme case we suppose that the plasma is contained
by the dip in the toroidal field which, in turn, is produced
by a poloidal current driven by the diffusion velocity crossed
with the toroidal B-field.

Pressure balance and Ohm’s law become

2p - B - B 13
p ve v (13)
These approximations (using n”/hl = 1 here) can be shown,

a posteriori, to be equivalent to the assumptions

Yy < B, <1 (15)
where
B, (x,t) = 2p(x,t) B, ° (16)
y(x,t) = BZZ(X.t) /Byez. (17)

v is the diffusion velocity. Using Eq.(14), v can be eliminated
from the equation of continuity to yield
dp

)l St BiNA S
dt 28 dX (py DX ) - (18)
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In the low-f limit, v B has little effect on the toroidal
current Jy [ from Eq.(4)]. Hence the decay of the poloidal
B-field proceeds as described in the last paragraph

dt = T 2x xS
Bse W

i1 ® Bye i (19)

The time scale for the decay of BY as given by Eq.(18) is

2
'TB ~x. " 8 / ﬁy. (20)

Hence BY may initially decay faster than Bz; but as ﬁy de-
creases and Xq increases, By ultimately decays slower than Bz.

A nonlinear diffusion equation such as Eq.(18) typically

leads to algebraic decay in time for By while a linear equation
such as Eq.(19) typically leads to exponential decay in time for

Bze-
One way to study diffusion equations like Eq.(18) is to look

for "similarity solutions" - special solutions composed of
combinations of functions of one variable with the appropriate
arguments. These functions then satisfy ordinary differential
equations. Classes of similarity solutions for a number of
equations like Eq.(18) were exhaustively studied by Holladay /29/.
In particular, he classified the solutions according to the
boundary conditions to which they were appropriate. Rosenbluth
and Kaufman /3/ applied the similarity solution technique to a
larger system of diffusion equations, which contained Eq. (18),

to describe the spreading of a semi infinite plasma. They found
the t1/3

/12 (section VI)/ pointed out that if a similarity solution for

decay behaviour which we shall soon discuss. Grad

Eq. (18) is perturbed the eigenfunctions all decay algebrai-
cally. Also, if BY is held to zero at a fixed boundary it must
have an infinite slope there (By ~ (l-x/ké)l/z) representing

a flow of plasma across the boundary. The free-boundary solution,
with finite slope at the edge and no plasma loss, is fundamen-
tally different from the fixed boundary solution.
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For the free boundary problem where the total amount of plasma
is conserved (xe(t) By(o,t) = const.), the simplest similarity
solution to Egs. (18) and (19) is

_ -1/3 2,2
By = Byo ¥ (1 - x°/a”(t)] (21)
xe(t) = a(t) = a,T 1/3 (22)
a
B,(x,t) =Z B, (t=o) exp [- %O = (+2/3. 1] (23)
where 7 is a linear function of time
3B t
= 1+ . (24)
o

Note that B, does nos have a simple exponential decay, but
rather exp (- (t/to) ). Still the B, field ultimately decays
faster than the plasma pressure; the initial ordering
v << By << 1 may be violated fof an intermediate time interval
(limiting profile) but it is ultimately recovered again. This
pattern is illustrated in Fig.(3) where the normalized solutions
[ Egs. (21) and (23)]are plotted for the particular choice of
damping decrement a0/2 pyo X =,05 and for the time scale
t/ 4 xwzs. This corresponds to the same conditions as in Fig. (8a)
(dashed curve). The poloidal field decays a little more slowly
in Fig. (8a) because of another effect which is discussed at the
end of this section.

For this particular choice of similarity solution, Egs. (21)

to (24), By has a parabolic profile in xX. Consider now a
perturbation from this solution and the corresponding lineari-
zation of Eg. (18). Like By' the perturbation must be even in x
and so may be expressed as the sum over even powers of xX. Using
a(t) given by Eqg. (22), since the perturbation should not greatly
affect the plasma spreading, the perturbation is found to have

the form
s -7 - pr1) /6 (x/a(n) P
2

p P




w 1D =

Since these terms decay much more rapidly than the parabolic
form Eq.(21), for o < Xx < a(t), we conclude that the parabolic
form becomes the most likely diffusion profile after a few
multiples of the initially fast diffusion time scale, Eq. (20) .
This is an important observation because most of the rest of

our analysis relies on the first few terms of a power series

in x. In general, estimates like this may help support the often
used assumption in equilibrium calculations that p is a linear

function of Y.

We have seen that there is an initial transient stage characterized
by a strong poloidal electric field followed by a stage in which
poloidal currents are maintained by a v x B driving term thus
forcing B to decay algebraically. These stages are characterized
by ﬂ ~ 0(1) and vy << B << 1 respectively. But since B initially
decays faster than y'hmce are initial conditions after whlch B
becomes comparable to or less than 'y for some finite time domaln.
Under these conditions the system approaches a third extreme case
called the "limiting profile" /8, 11, 12/. The profiles for this
extreme case are calculated by letting x, > © 8o that the

poloidal field B, is constant in time. This is equivalent to

having an infinite reservoir of poloidal flux.

In this case there exists a steady state, static solution to Egs.
(1), (2), (4, (6), (7) and (9) with no sources oOr sinks of
plasma. Physically, the E X B drift inward (pinch effect) Jjust
balances the diffusion outward. Here the poloidal Ez-field has
decayed away leaving only a uniform toroidal Eyo-field. The
equations for the resulting B-fields, valid for arbitrary B

and Eyo-field, are

. 2 2
d B, - . sc gyg, 1+cCB, /BY
2 2
dx C 1 f B, /. By
(25)
de S-OEYO l—C
dx = % 2 Bz C

2 2
1+Bz /By
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In the low B limit, Bz2 << Byz, the solution is
Sc E
= : o . YOS
Bz Bze x/xe ! Bze c e
2 _ 2 2 - _ W2 2
By = Bye + Bze (1 c) (1 X /xe ) (26)
B
p= 25 ¢ (1-x¥x ).

In the B = 1 limit, the analytic solution (which corresponds to
the z-pinch)

B. =0 (27)

N
(@]
]

also has a parabolic profile for p(x).

Surprisingly, computer solutions of Eq. (25) for arbitrary B
all have nearly parabolic profiles for p(x). A representative
example is shown in Fig. (4).

A property common to all of the limiting profiles is that the
plasma is diamagnetic with respect to the poloidal Bz—field and
paramagnetic with respect to the toroidal By-field. The

toroidal B-field, which is necessary for MHD stability, effectively
excludes part (half) of the plasma. This peculiar effect.is due

to the difference between parallel and perpendicular resistivity -
the fact that both components of the current are driven by one
component of the E-field. This effect was predicted and ex-
perimentally observed by Bezbachenko /30/ and by Bickerton /31/.
More recently it was observed in the TESI experiment at Jiilich
/32,33/. The effect is enhanced by high-Z impurities; C = 0.29 as
Z » » so that more than two thirds of the plasma is excluded re-
lative to purely poloidal field confinement. We shall see later
that the paramagnetic effect (By < y) may be greatly enhanced by
Pfirsch-Schliter diffusion.

The solutions that have been considered so far in various limits
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are all essentially parabolic in x for ﬂy and linear in x for
B,. We shall now use this approximation to reduce the full
set of partial differential equations [ (1) - (6)] to ordinary
differential equations. The instantaneous decay rates and full
evolution of p(o,t) and Bze(t) are then determined from these
equations by numerical computation. The alternative procedure
of finding a variational minimum principle for the original
partial differential equations and then deriving ordinary
differential equations for the evolution of parameters in
test functions /34/ would be preferable; but this procedure
has not been sufficiently developed yet. A computer solution
of the original partial differential equations is beyond the
scope of this work and is a technique that cannot be readily
applied to more complicated geometries.

The spatial derivatives in the diffusion equations bring down
higher order terms in the expansion. The lowest order equations
then give relations among the lowest two orders of the un-
knowns. At any level of truncation, there are more unknowns
than eqguations. We shall complete the system by using the
following global constraints:

At the plasma surface the fluxes and B-fields are matched to
their vacuum values. In particular the poloidal flux in the
vacuum is

¢ (©

ge ) = By (t) (x, - x (€)). (28)

and the By—field is fixed in the wvacuum.

After eliminating unknowns, the four matching conditions (flux
and poloidal B-field at the two edges of the plasma) yield two
new equations. Next, the pressure is assumed to be parabolic
out to the edge of the plasma and to be zero there

p (x,t) = p_(t) (1 - x?/x°_ (t)). (29)

e
Finally, it is assumed that the total amount of plasma per
unit area of slab is fixed
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po(t) xe(t) = const. (30)

The resulting ordinary differential equations are

1 28 L W,. - =2— W (31)
B,e dst bz Yz l-a P

L ° Po =W_ =W +W. _ +W (32)
P, drt jo) sp ey ez.

Using dimensionless forms for time and the plasma half-thickness

T = t/4xwzs as xe(t)/2xw (33)

we find the decay rate for the external poloidal flux
- . 2& _
W@z = /a(l a) (34)

which is used in Eq.(31) for the decay rate of the Bze- field.

The decay rate for the central plasma pressure is the sum of

Spitzer diffusion

- 2 .2
wSp = 2 po/Byo a (35)
the E, x B_ pinch effect
Y z 2 2 2
Wey = C B,e / Byo a (36)

and the E, x By pinch effect

2 a 2 a

2 2
H Wy~ (Po* T3 Bze! (wsp+wey) 1/~[Byo Pt Be ] @an

ez [Bze 1-a
For a given toroidal field in the vacuum, Bye' the toroidal field

in the center of the plasma, B is determined from the pressure

yo'
balance equation

2711 2 2
Byo = Bye® t.B,i° -2 p.. (38)

The solution Bze(t) and po(t) of Egs. (31-32) are represented by
the dashed curves in Figs. (6a-8a), and the corresponding decay
decrements [Egs. (35-37)] are plotted in Figs. (6c-8c). In all
these graphs we set Bye =1, a(t=0) = .02 and po(t =0) = .2
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while different initial values of B, are used. Note that the
2

S is
used on the horizontal axis. In all of the cases studied so
far, the E, x By pinch effect yields a negligible decay de-
crement by comparison to the others - rough estimates indicate
that it is a finite B effect. Note that the final value of
po(t) is nearly the same in all three graphs as would be
suggested by the analytic solution Eq. (2) provided the pinch
effects are only transient. However, the poloidal field Bze(t)
decays less rapidly than the analytic solution [Eq.(23)] be-

cause of the second term in Eq. (31). This term came about

vertical scale is logarithmic and the time scale t/4xw

because the flux in the vacuum region changes not only because
the B-field changes but also because the dimensions of the
vacuum region change. In this case, the time rate of change

of the inductance effectively reduces the plasma resistance.

At the end of section III, these results are compared with

the cylindrical slab results.

III. Cylindrical Slab

Two new effects appear when the plane slab is bent into an
infinite cylindrical slab - a Belt Pinch without end effects.
Plasma spreading is enhanced by the Pfirsch-Schliiter effect
/5, 6, 8, 9, 15/ and the radial position of the plasma may
drift as the fields evolve. In this section these effects

will be investigated, together with the resulting evolution

of the plasma pressure and B-fields, by using the lowest terms
in a series expansion of the equations augmented by global
conditions as described at the end of the last section.
Estimates are given for the validity of this technique and

a representative sample of computer solutions is presented and
compared with the corresponding plane slab solutions. The
mathematical peculiarities of the infinite cylindrical slab

model are discussed in Appendix B.




=7 -

As before, we assume uniform constant temperature, " =Cn

L
and we neglect inertial terms, viscosity and charge separation.
We start with Egs. (1) - (6). However, conditions must be added

to these equations to make sure the infinite cylindrical slab
approximates a finite height axisymmetric torus. For the axis-
symmetric torus we may define a flux function ¥ (r,z,t) by

B=VYchp+Bcp$ (39)

where ¢ is the ignorable coordinate angle. Eg. (39) automati-
cally ensures that Vv.B = O.

Then for solutions of the pressure balance equation Vp = J x B
it follows that p and r Bcp must be uniform over flux surfaces

P p(Y¥,t) (40)

rB

o £ (Y,8) (41)

In changing to the infinite cylindrical slab, we have changed
topology and we must artificially reintroduce these constraints

(40) - (41). Without these constraints, a typical solution of
Egs. (1) - (6) would have unequal amounts of poloidal current
or poloidal flux flowing up and down in the slab. Note that,
while the use of a flux function is a convenience for the
axisymmetric torus, it is a necessity for the infinite cy-
lindrical slab.

Now let us change coordinates (xr, ¢, z) = (x, ¢ , z) where
X is a measure along the radial coordinate from
the center of the plasma and is defined by

£ ro2 () (1 + 2 x). (42)
Here ro(t) is adjusted so that Vv is minimum at x = O. Thus

the linear term is missing in the series expansion for ¥

Y(x,t) = ¥ (t) + ’i’z(t)x2 + Y5 (t) S (43)
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Note that x corresponds to the inverse aspect ratio which we
shall take to be small for our expansions. The slab thickness
is approximately A o ro(t) (xe+(t) - Xejt)) where Xei(t) define
the outer or inner edge of the plasma.

In this notation the relevant equations (1) - (6) become
- 2 3
B = (d¥/dx) /r “ z + By, o (44)
= 2 2
r3, = - (142x) (%0/ex?) / r 213 = 2£(¥) /ox (45)
r 2 (L + 2% p'(¥)+ £ E(Y) = v (46)
CJ.B =ScE.B (47)
v_ = - (op/dx) / 8B? + cE x B / B? (48)
dE/Ot = (1+2%)d (c Ez) / b x \ (49)
dY/dt = - rc Ecp (50)
op/dt = - (d(p rv,) / dx) / roz. (51)

The last four equations are correct when r, is fixed. When r
changes with time, the time derivatives must be modified by

(o)

O = 8 . o) 2 d
>t St 3t (on r, (t)) (1+2x) =y (52)

and e in Eq. (48) refers to the fixed frame.

Egs. (40) to (51) describe the system we shall study. We shall
now outline the formal reduction of these equations to ordi-

nary differential equations before discussing the two new

phenomena.

First consider the pressure balance equation. We expand p (V)

and f(¥) using the form
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P(Y,t) = p(t) + P (t) (¥ - ¥) + ... . (53)

where the pl term is second order in x and it is assumed that
the p2 term is negligible by comparison. Then the lowest two
orders of the pressure balance equation (46) are

2.1 1 _ - _ 2 _
r pm + £ £ = (er)o = - 2 ‘i'z/rO = - B, (54)

r ’p (£ ). = - (4%, + 6 Y3)/r02 (55)

Here, subscripts refer to orders in x. From Ohm’s law Eq. (47)
we have

(er)o $c(rEcp)o el o (56)
(rdy)y = ro2 Sc E, B, /C £_. (57)

Note that there must be a uniform verticle Ez-field to support
pressure pl.

The three lowest order evolution equations are

dPo - Tw. - aal _ 2
Dt [ZP ?2 Sc((rEQ)o le Ezl fo>+ Se Ezofo]po/sfo (58)
oY Of
o _ _ o _
3 - e B, . 3% C E,qe (32}

The first term in Eq. (58) represents Spitzer diffusion, the middle

two terms in parentheses represent the two pinch effects, and the
last term represents the Pfirsch-Schliiter effect.

All the equations (40) - (51) have now been used, up to the
appropriate order in x.

We find that there are more unknowns than equations and if we go
to higher order in the equations there will still be more unknowns
than equations. The system will be closed by considering four

boundary conditions and one global conservation condition. When
applying these conditions, we truncate the expansions [Egs. (43)
and (53)] at the desired order and use the truncated forms out
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to the edge of the plasma. For example, here we use a parabolic
profile for Y (x) and p(x); however, the same method may be used
for a higher order truncation.

The boundary conditions are:

1) The pressure is zero at the edge of the plasma. Using the
parabolic approximation, which is the lowest order approximation
for large aspect ratios,

p(x,t) = p_(t) (1 - x%/ a’(¢)) (60)

where a(t) is related to the total thickness A(t) of the plasma

A= 2 r, a, (61)

we find the relation
pl(e) = - p (t) / ¥, (t) a(t). (62)

2) The toroidal field, rBco = f(¥,t), is taken to be a fixed
constant fe outside the plasma. Then

£h(8) = (£, - £,(8)) / ¥,(t) a’(t). (63)

3) The poloidal flux must be continuous across the plasma boundary.
Referring to Fig. (5), we find the fluxes at the inner and outer
plasma edges are

2 2

1 1

Y_ =3I, %w T3Byr, (- 2a) (64)
=y o+ 1 2

Yo = You 1y (r %(142a) - h). (65)

Here we are defining ¥ as the poloidal flux, through the area
between the center line and the given radius, divided by 2m.

I.
iw
and Yow is the flux at the outer wall. Using the condition that

is the toroidal current per unit height on the inner wall

the fluxes must be the same at the inner and outer edges of the

plasma, ¥Y,£ = ¥_, we find

+
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ro2(t) =

N

r v &I, 2 _ ¥.) / Bylt) + o(ar, 2y, (66)

ow iw Tiw W
This equation determines the position of the plasma relative to
the walls. In general, Eq. (66) indicates that the plasma will
drift to the inner or the outer wall as the poloidal field

B4(t) decays. The simplest field programming we may use to avoid
this drift is to fix the current on the inner wall and the flux
on the outer wall so that

2

I...r . (67)

¥ - iw iw

ow

Y[

for the duration of the experiment. This condition fixes the
plasma radius at

roo=Toy / V2 (68)
which, in fact, is close to the operating position used in the
present Belt Pinch. More about this later.

4) The poloidal B,-field must be continuous across the plasma
edge. Using the parabolic approximation for the flux within the
plasma and Eg. (65) we find

Yo(t) Sl Yz(t) a(t) (1 - a(t)). (69)
It is convenient to use as a variable the nominal poloidal B,z
field at the edge of the plasma

2

Byo(t) == 2 ¥, (t) a(t) / r (70)

To lowest order B, = B, = - B,. Then Eq. (69) relates Bze(t)

to the flux at the center of the plasma Yo(t).

5) Finally we shall take the amount of plasma per unit height
of the cylinder to be a fixed constant.
This implies 7
a(t) py(t) =N (71)

where N is constant.
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Alternatively, we could allow for end contraction or for

plasma lost to the system by prescribing an evolution for N.
This step is planned for future work on two dimensional
systems.

After applying these constrants (1) - (5) to the lowest order
evolution equations (58) and (59) we find ordinary differential
equations for the cylindrical slab which parallel the plane slab
equations (31) - (38):

1 ? Bze =W _ =W, -T2 W (72)
B drt bz Yz l-a'p
ze ,
dp
1 o _ -
-p-o e Wp sp + Wey + Wez + wp-sch (73)
Using dimensionless time
= 2 ‘
t =t /«r s (74)
o
the decay decrements are, for Spitzer diffusion
- 2 2
wsp =-2p_/ a Bcpo (75)
e Ey X B, pinch effect
_ 2 2 2
Hey T G B / a Bcpo (76)
the E, X Bcp pinch effect
- 2 - 2 2
wez - [Bze sz (po + l-a Bze ) (Wsp+ wey + wp—sch)-J /
5 2 (77)
[2 By," = ByoiBye + B0 *+ 2B, / (1-a)]
and the Pfirsch-Schliiter effect
W =-4cp /B2 (78)
p-sch o -ze °

The decay decrement sz is the same that given by Eq. (34).




We have used the notation

(1) £,(t) / r

B
o

B
e

fe / r e (79)

Given B, (T) and P, (t) at every time step, we compute B (T)
from the lowest order pressure balance equation (54) wrltten
in the form

2 2
Bcpo - Bcpe Bcpo + Py = B, /2

o (80)

and compute a(t) from Eq.(71). Hence Egs. (71) to (80) form a
complete system.

Let us consider the conditions under which this system is valid.
First of all we have neglected the cubic term in the series ex-
pasion of the poloidal flux rEq.(43)];| X ¥, | << ¥,. Deter-
mining Yz and Y3 from the lowest two orders of the pressure ba-
lance equation [Egs. (54) and (55)], we find that a small in-
verse aspect ratio is necessary for this approximation

a<< | B (B

®po wpe = O P l/| (po cpe mo) l' (81)

Note that the term on the right is generally of order one for
low B plasmas.

Secondly, when evaluating the diffusion velocity [Eq. 4871 we
2 2

have approximated B® & Bmo . This implies the condition
2

0 (82)

2 P, << B

Note that the paramagnetic effect, B 2 > B 2, which is

®o e
observed when the pinch effect is one of the dominant terms
in Eq. (73), strengthens this approximation. The other con-
ditions necessary for the truncation procedure used here

have not been evaluated.




- 24 -

Before looking at sample solutions of these equations, let us
consider the two new effects that distinguish the cylindrical
slab from the plane slab.

It follows from Eq. (66) that the radial position of the plasma
is determined by the current on the inner wall, the flux on
the outer wall, and the poloidal field B, = Bze' Suppose the
first two are constant in time. If they are adjusted so that
the initial position is I, = oy / V2, then the plasma will
stay at this position as B, decays. However, if the initial
position is perturbed in or out, then the plasma will fall

in or out as B,e decays. Hence the radial position of the
plasma is unstable on the time scale of the decay of the
toroidal current. Such behavior has been observed in previous *
Belt Pinch experiments /33, 35/.

As an alternative boundary condition, suppose the inner wall
is a constant flux surface (B1 fixed) rather than a constant
current surface (Iiw = Bl - B2 fixed) as above. Then it

can be shown that, even if the initial radial position is r, =
row/VZ as above, the plasma always falls to the inner wall

as BZe decays

r 2(t) = 2 [x,” - 1y, (Bye(0)/B, (t) - 1)]. (83)

iw
Hence, it is preferable to hold the current fixed on the inner
wall and not the flux.

We now consider the Pfirsch-Schliiter effect /5, 6, 8, 9, 15/ in
the cylindrical slab. From Egs. (55) and (57) we see that the
equilibrium requires a vertical electric field. In the presence
of the toroidal B-field, this electric field induces a zero
order radial flow directed away from the center line of the
cylinder .

(cv), =4 Cp/s B, (84)
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The time it takes for a given element of plasma to cross the
slab of thickness A

2
Ty~ AT, 8B, / 2 Py (85)

If the position of the slab as a whole is fixed, the plasma
must return by flowing along the field lines and around the

ends of the slab /6/. The centrifugal force of this flow has
little effect on the equilibrium if

ii§_~ .36 1(%0 2ro)

h
Te Te4[ev] '¥4 h R

where R is the maximum radius of curvature of the field line
(< ro), h is the height of the plasma (~ 2 ro),4( is the ro-—
tational transform [see Eq. (87)], ﬁw = 2 pO/Bmez and a, given
by Eq. (6l1), are dimensionless forms.

High temperatures and moderate values of rotational transform
are needed to make this effect negligible.

The net plasma loss across the flux surfaces due + - the Pfirsch-
Schliiter effect, as indicated in Eq.(78),

results from the fact that the first (and higher) order flow

is not divergence free. Comparison of the decay decrements (75)
and (78) shows that the Pfirsch-Schliiter effect becomes im-
portant only when

2 2 2
B,e s a Bmo . (86)

For the Belt Pinch, this is generally true only late in the
discharge. For highly elongated cross sections, the rotational
transform is approximately

xw ZZo Pae (87)
Bcpo
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where h is the height of the plasma cylinder. In the present
Belt Pinch the height of the plasma is roughly the same as

the diameter, h ~ 2 roe although it varies during the discharge.
Thus the condition for the dominance of the Pfirsch-Schliiter
effect [Eq.(86)] becomes £ € a. In the experiment, the maximum
value of k£ is kept just below 1, the Kruskal-Shafranov sta-
bility condition, and the plasma is initially made thin,

a << 1. Therefore the Pfirsch-Schliiter effect becomes dominant
only late in the discharge after kX has decayed and the plasma
has spread out in thickness.

Figures (6a - 8a) (solid curves) show the evolution of Bze(t),
po(t), and a(t) for a cylindrical slab and figures (6b - 8b)
show the corresponding decay decrements [Egs. (75) - (78)7.

The normalization Bcoe = 1 is used throughout. The initial values
po(o) = .2 and a(o) = .02 are the same for all three graphs
while the initial values Bze(o) =1.,, .3, and .1 are chosen

for succeeding graphs. B is approximately the rotational

transform X if the plasmzeheight equals the plasma diameter

[Eq. 87]. The vertical scales are logarithmic while the hori-
zontal scale is linear in the dimensionless time 1 = t/rozs.

For Te = 10 eV and r, = 22.6 cm the full time range shown is

250 psec; the decay time scale for BZe in Fig. (6a) is less than
50 psec which roughly agrees with present experimental obser-
vations. In the next generation Belt Pinch we expect B, = 53 cm;
then for T, = 100 eV the full time range shown is 43.5 msec.

One sees immediately that for Boa ™ O0(1) the pinch effect

Ey X B, is an important but transient effect.

Increasing the initial plasma thickness, a(t=o0), does not
change this effect but it lengthens the time scales. De-
creasing the initial pressure of course increases this pinch
effect but it remains a transient. The other pinch effect,

E,6 x B@' is always negligible for these moderate to low values
of B £ .4.




- Dk =

The Pfirsch-Schliiter effect dominates later in the discharge
(see wp-sch in Figs. (6b - 8b)) after the pinch effect is
negligible. At first the Pfirsch-Schliiter decay decrement,
Wp-sch’ decreases in Figs. (7b) and (8b) because po(t)

initially decays faster than Bzez(t); but then wb-sch levels

off when po(t) and Bzez(t) decay at comparable rates.

Figures (6) - (8) apply to a Belt Pinch with fixed height,
provided no plasma is lost and end effects or force-free-
fields have negligible effect. Figure (9) illustrates the
opposite extreme where the thickness of the plasma, a, is
fixed (a =.0 2 here) and the height varies like l/po in

order to conserve the total amount of plasma. Fig.(9) should
be compared with the cylindrical slab part of Fig. (6). The
transient pinch effect is roughly the same. The poloidal field
Bze(t) decays at a constant rate because a is fixed (and

the second term in Eq.(72), which follwed from da/dt, is zero).
With fixed a, Spitzer diffusion follows a l/t behavior rather
than a t'l/3 behavior. Hence the central pressure P drops
more rapidly. The diffusion time scales remain closer to their
initially fast values, by comparison to the expanding plasma
case, so that the Pfirsch-Schliiter effect rises to dominance

sooner.

Clearly, more must me learned about the Belt Pinch equilibrium
in order to determine the evolution of the plasma height (or
thickness) together with the evolution of the pressure and
fields.




Conclusions

The following typical sequence of events take place during the
classical diffusion of a uniform temperature free boundary
plasma slab.

For an initially high-f plasma there is a rapid decay of the
poloidal electric field. Then the pressure profile decays to
a nearly parabolic shape. These are estimated to be transients

on the diffusion time scale.

If there are sufficiently large poloidal fields the plasma may
be compressed through a succession of equilibria. However, this
pinch effect rapidly gives way to Spitzer diffusion which imparts
an algebraic time dependence to the central plasma pressure

po(t) while the poloidal B-field decays more exponentially on

a longer time scale. Later in the discharge, the Pfirsch-

Schliiter effect dominates in the pressure decay.

There is an open question concerning how this picture is
altered by the evolution of the plasma height ov the plasma
shape. To answer this question one must know how the externally
applied fields determine the shape of the equilibrium. Also,

it would be useful to have a simple model to predict the over-
all temperature of the plasma and at least the general features

of the temperature profile.

However, the detailed analysis of the simple model presented
here provides some basic understanding of the relation between
the various forms of diffusion as well as a tool for making
rough estimates of the behavior of the Belt Pinch plasma.
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Appendix A

The following are a list of numerical estimates of various
terms in the moment equations. These estimates may be used
to justify the neglect of inertial effects, viscosity, and
charge separation for the diffusion problems considered in
this paper. That is, we justify using Egs. (1) - (6)) as

a good approximation to the full moment equations.

The moment equations, as written by Braginskii /26/, are derived
under the condition that the electrons undergo many Larmor
gyrations during a collision time

5\ ( _Te 3/2 :o") o> 1
We Te ™ 20 ( 10 kG / ( 10 ev ) K Ne (A1)

Either high temperature or low density is needed to ensure

this approximation.

In order to write the moment equations and Maxwell’s equations
in the same variables, the velocities of the individual spe-
cies are transformed to current density, j = ¢ J/ 4m, and

fluid velocity, v. To simplify this transformation we neglect
the mass ratio, Zi me/mE and the charge separation characterized
by the dimensionless form (niZi-ne)/ ng,. For an estimate of the
charge separation between the center and the edge of the plasma,
we estimate the electric field induced by the Hall effect

E ~ Te/ e A (A=2)

for a slab of thickness A. We then estimate the resulting charge

separation from Maxwell’s equations
5 T [ev]
ne[l/cm3]A2[cm]

. N
(“iZi - ne) / n xDe /A = 5,.53x10 i I

(A-3)

This charge separation can be neglected whenever the Debye length

is much smaller than the plasma thickness.
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Now consider the resulting moment equations on the shortest
possible diffusion time scale

2 3/2

T=A"8S = .124 T~ “[ev] Az[cm] psec. (r-4)

Then an estimate for the maximum Spitzer diffusion velocity
follows from the equation of continuity

v~ AT (A=5)

The Pfirsch-Schliiter flow velocity [Eq.(84)] may be entirely
different so that a separate estimate is made for the inertial
effects due to that flow [Eq. (85)].

From the sum of the momentum conservation equations in plane
slab geometry we find

o
m, n, dv,/dt + 9p - I X B - 0 E - .32 dv) =0 (A-6)
i1 1 . dx (ni Ti T3 S§)

where Braginskii’s article /26/ may be referred to for notation
(except that j = ¢ J/4m). After rendering this equation dimen-
sionless, we find that the inertial term may be neglected when

me. m
m; v%/Ti = 62' i / pé << 1; (A=7)
T, T;[ev] A%[cm]
the term ¢ E may be neglected when
-8
v%/p c2 - 7.24 x 10 << 1 ; (A-8)

8 Te3[ev] Az[cm]

and the viscosity term (last term) may be neglected for a

Deuterium plasma when 1
6

ri/r ~ 1.7x10'3 ( %) (1—‘;“-‘-)1<< 1. (A-9)

We are then left with the pressure balance equation,Vp = JXB.

From the appropriate difference of momentum conservation

equations we have (using C = “Wﬁi = 1 for simplicity here)




= 3] =

d 2 2
a£<c J /wp ) =cE-J/S+ (Vv-cJ/4m en) x B

e

(A-10)
s 2 v
e (neTe)/ene + .32 en dx (ni Ti Ty bx)
Again using a dimensionless form, the term on the far left
scales like
czﬂn B A2 = 2.8 x 16—5 <;916) (;—Em >2 << 1 (A-11)
P Co g /7 \ A

and, relative to the rest of the equation , the viscosity term

on the far right scales like

' 16, 2 3/2 2
5 -2 10 T 1 cm)
B We Te Ti/T = 3.4 x 10 P ( n_ ) \18 ev> <—Z__7 «< 1.

The J x B and V(neTe) terms have no effect on those components
of the E-field within the flux surfaces and, when uniform tem-
perature is assumed, they have no effect on Faraday'’s law
B/t = - v x CcE.
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Appendix B

Infinite Cylindrical Slab as the Limit of a Torus

The infinite cylindrical slab is a useful model because it

is the closest one-dimensional approximation to an axisymmetric
torus with highly elongated cross section such as the Belt
Pinch. Also, it turns out that the diffusion equation is in-
sensitive to this approximation; this can be seen by writing
Eq. (73) using the rotational transform [Eq. (87)] as a variable
and comparing with Maschke’s results for a torus with elliptical
cross section / 9 / . However, mathematically, the slab is a
singular limit of plasma geometries with finite height. Here,
the differences between slab and finite geometries will be
catalogued. First among these, a theorem will be proved show-
ing that the solubility condition for the pressure balance
equation is different in the two .cases.

The pressure balance equation Vp = J X B for an axisymmetric
torus may be written

¥ v + £ £ (YY) + r2 p’ (¥) =0 (B=1)
2 2
¥ . _ D - 1 oY% b4
v ¥ = ;—%— = ———br + ——g——i-z-— (B-2)
=0 (r,2z)

where o(r,z) is related to the toroidal current ¢ = -« j@‘

It is well known / 36, 37 / that given smooth functions p(Y)

and £(Y¥) -equations generally have one or more solutions for
¥(r,z) or the corresponding o(r,z). However:

Theorem

Given ¥ (r,z) with a simple mini-max point, or given the
corresponding o (r,2z), in general there exists no solution
of (B-1) for p(¥) and £(Y).

T—
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Proof

Eq. (B-1) actually represents two equations in the variables
¥ and z because r(Y¥,z) is not a single valued function. Let
r = ri(Y,z) on the + or - side of the mini-max of ¥(r.z).

Then Eq. (B-1l) becomes the two equations

2

L(¥,2) + £ £°(Y) + % (Y¥,2) p'(¥) = O (B-3)
where
T(Y,2z) = o (ry(Y¥,2), 2). (B-4)

If r+2(Y,z) # r_z(Y,z), Egs. (B-3) can be solved uniquely for
p’(Y¥) and £ £’ (Y)

pry) = [ s(v.2) - s 1/ 2

£ £ =[ ZM02) r_2 (¥,2z) —Z_(¥,2) r+2(’i'.2)]/ A(Y,z) (B-5)

where A(Y,z) = r+2 (Y,z) - r_2 (Y,z)

Giving ¥ = ¥(r,z) completely determines the functions
ri(Y,z) and iéY,z) so that there is no freedom to make
the right hand sides of Eq. (B-5) a function of ¥ alone.
Therefore, no solution exists to the pressure balance

equation (B-3), n ﬂﬁne*ai.

Corollary

For the infinite cylindrical slab, given ¥Y(r) with a simple
mini-max point or given the corresponding o(r), in general
a solution of Egs. (B-1), (B-3), or (B-5) exists and both
p(¥) and £(Y¥) are uniquely determined.
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For the finite axisymmetric torus the theorem may be pa-
raphased by the statement that the set of functions ¥ Ax oZ)
that are solutions of the pressure balance equation (B-1) is
much smaller than the set of all possible functions v(r,z)
possessing a simple mini-max. In order to solve the pressure
balance equation, one must give (p(Y¥)., f£(v)) and solve for
¥(r,z) and o(r,z). Alternatively, for the infinite cylindrical
slab, the function ¥ (r) can be given, but then p(Y) and £(Vv)
are no longer independent functions. The pressure balance

equation drastically changes character with the change in top-
ology.

These theorems also illustrate that the pressure balance
equation provides a very peculiar constraint for the diffusion
equations (1) = (6) . We may not think of Ohm’s law as
determing the toroidal current distribution which in turn
determines the pressure profile and poloidal current profile.
For an iteration scheme we must solve the equations in re-
verse and use Ohm’s law to determine the velocity flow field.
This property of the equations makes 2-D computer solutions

of Eqs. (1) - (6) very difficult.

several more differences between the slab model and the finite
model will now be listed.

The "magnetic axis" in the slab model is a sheet whereas, in
all the known axisymmetric torus equilibrium solutions, it is
one or more lines. Is it possible for the magnetic axis to

be a sheet of finite height? Apparently not if ¥ is an analytic
function of r and z; i.e. if ¥ is constant along a line in the
(r,z)-plane, the line must close on itself or extend to in-
finity. However, one may have any number of magnetic axes along
a line so that one should be able to approximate a "sheet mag-
netic axis" arbitrarily closely. If it is possible to construct
such equilibria, the slab model may be a better approximation
to them than the single magnetic axis models which have been
investigated before.
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Cooling rate due to 1 %

Oxygen impurity in various ionization stages (Corona
model /22/) and Ohmic heating rate for slab of thick-
ness A carrying uniform volume current.

Notation and conventions for the plane slab model.

Plane slab similarity solutions [Egs. (21) and (23)]
for Spitzer diffusion; illustrating the difference

between algebraic pressure decay and exponential B-
field decay.

Plane slab limit profiles (normalized). Solid curves
for B = .9, dashed curves for f = 0. and f » 1.

Notation and conventions for cylindrical slab model.

Time-dependent diffusion for plane and cylindrical slabs
with fixed height. Normalization: Bme = 1. Dimensonless
time scale: t/S roz. Initially B,o = ) I P, = .2, a = ,02.
Note initial pinch effect and late Pfirsch-Schliiter effect.

Time-dependent diffusion for plane and cylindrical slabs
with fixed height. Initially B,e = .y P, = .2, a= .02,

Time-dependent diffusion for plane and cylindrical
slabs with fixed height. Initially B,e = sdy Pg = 525
a = .02. Cylindrical calculation ends when a = .3.
Time-dependent diffusion for plane slab with fixed
thickness a = .02 and variable height (not shown).
Initially Bze =1, and By = s 2%
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Plane Slab Limit Profile
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Fig. 4
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